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a b s t r a c t

The problem of estimating the spectral content of exponentially decaying signals from a set of irregularly
sampled data is of considerable interest in several applications, for example in various forms of radio fre-
quency spectroscopy. In this paper, we propose a new nonparametric iterative adaptive approach that
provides a solution to this estimation problem. As opposed to commonly used methods in the field,
the damping coefficient, or linewidth, is explicitly modeled, which allows for an improved estimation
performance. Numerical examples using both simulated data and data from NQR experiments illustrate
the benefits of the proposed estimator as compared to currently available nonparametric methods.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Spectral estimation is a classical problem with applications in a
wide variety of fields, such as astronomy, communications, eco-
nomics, medical imaging, radar, spectroscopic techniques, e.g., nu-
clear magnetic resonance (NMR) and nuclear quadrupole
resonance (NQR), and much more; consequently, the literature
pertaining to the problem is very rich, see, e.g., [1] and the refer-
ences therein. However, the majority of the works focuses on esti-
mating the spectrum from a finite sequence with evenly sampled
data, whereas in many applications it is often not possible or suit-
able to sample in such a way. This leads to sets of data that we cat-
egorize as either ‘‘gapped” or having ”missing” samples, where by
the former we mean regularly sampled data in which blocks of
samples are missing, and by the latter we mean that there is no
particular structure in the sampling. Applying traditional spectral
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estimation algorithms to such sets of data may lead to a large loss
in performance compared to having a complete set of data [2,3].

The problem of estimating the spectral parameters of exponen-
tially damped signals has attracted significant attention during re-
cent decades as such signals arise naturally in several applications,
for example in NMR and NQR. Traditionally, the frequencies and
damping coefficients, or linewidths, of such signals are estimated
using the periodogram, where the dampings are given as the width
of the peaks. When only a few samples are available, this estimate
is highly biased as the peak width in the periodogram depends on
the number of samples (see, e.g., [1]). To improve the spectrum
estimation, both parametric methods, e.g., the Matrix Pencil meth-
od (MP) [4], and nonparametric methods, e.g., the damped Capon
algorithm [5], have been proposed. Commonly, the free induction
decay (FID) of such a spectroscopic signal is modeled as a sum of
exponentially damped sinusoidals. However, the use of more re-
fined signal models such as using a Voigt lineshape for the spectral
lines have also been shown to be beneficial [6–8]. Model-based
methods making strong use of the assumed signal model will be
sensitive to deviations to the assumed model, whereas nonpara-
metric methods, not making use of such explicit models, will gen-
erally offer more robust spectral estimates. As an example, we will
here examine stochasticly excited spectroscopic signals, for which
the measurements can be well modeled as FID’s.

Stochastic or noise excitation has found application in NMR
[9,10], electron paramagnetic resonance (EPR) [11] and NQR
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[12,13]. Often, there are advantages in acquiring more than one
complex data point after each radio frequency (RF) pulse of a sto-
chastic excitation sequence but the resultant FID signal will then
have gaps where data is missing between the blocks of acquired
data [9,10]. The gaps in the data correspond to the times when
the RF pulses are applied plus the following dead-times before
which the signal can be acquired. In this situation, there are two
dwell, or sampling, times. One is the actual sampling time between
the acquired complex data points in each block of data, while the
other is the time between equivalent points of each block of data.
Here, we refer to the latter as the stochastic dwell or sampling time
and define it as the gap (missing data) time plus the acquisition
time of each data block. It is thus the time between the first data
point of one block and the first point of the next. In general, the
stochastic dwell time is not an integer multiple of the actual data
dwell time. In such a case, the noise-free signal can be well mod-
eled as a damped sinusoidal signal, where the data is given as
blocks of evenly sampled data but where the gaps between the
blocks are not necessarily an integer multiple of the sampling time
within the blocks. Therefore, the data can sometimes be considered
gapped but is often highly irregularly sampled.

The problem of estimating spectra when data is missing has
been considered, for example, in the astronomical literature, where
several parametric and nonparametric methods have been pro-
posed, see, e.g., [2,14,15]. Irregular sampling schemes have also
drawn attention in NMR, as they allow for faster data acquisition
in multidimensional NMR. Numerous methods for spectral estima-
tion have been proposed, for example linear prediction (LP) (see,
e.g., [16]), the filter diagonalization method [17], PARAFAC, and
other multidimensional decomposition methods (see [18] for a
good tutorial). These methods will first reconstruct the missing
data to yield a full data sequence without any missing samples.
Then, in a second step, the spectral content is estimated from the
reconstructed data set. If the data has been sampled irregularly,
this might necessitate the reconstruction of the data on a very fine
sampling grid, possibly making the so-obtained full data set very
large and cumbersome to process.

Methods that directly estimate the spectrum from the given set
of data, independent of the sampling grid, have also been proposed.
The common approach is to fit the spectrum to the set of available
data through either iterative maximization of the spectral entropy,
such as the maximum entropy reconstruction method [19] (see
also [20] for a comparison with LP) and the forward maximum
reconstruction method [21], or by iterative minimization of a
norm, for example the l1-norm [22]. These methods have the
shortcoming that they require the selection of user parameters,
such as the noise level. This can often be a difficult task and it
might potentially degrade the performance of the spectrum esti-
mation. Furthermore, such methods do not allow for accurate esti-
mation of the signal decay, which is often of interest in
applications such as NMR and NQR. In effect, when only a few sam-
ples are available, the quality of the signal decay estimate will typ-
ically be quite poor as the width of the spectral mainlobe will be
limited by the resolution of the spectral estimator. Algorithms that
exploit a Lorentzian signal model, such as MP, often yield satisfac-
tory spectral estimates if the data is well described by the model,
but do not work for irregular sampling schemes. Along the same
lines, we have earlier proposed an algorithm for accurately recon-
structing the missing samples [23], but this will also only work for
the gapped data case.

Recently, a new approach, termed the iterative adaptive ap-
proach, or IAA, was proposed in [24], and its usefulness has been
shown in several areas: MIMO radar imaging [25], source detection
[24], spectral analysis of real-valued data [26], and coherence spec-
trum estimation [27]. This nonparametric algorithm does not
require the specification of any user parameters. Furthermore, no
assumptions have to be made on the sampling scheme and the
spectrum can be directly estimated from the possibly irregularly
sampled data. In this paper, we extend the IAA algorithm to also
explicitly model the signal decay. Different from the previous der-
ivations of IAA, where a weighted least-squares approach was
used, we here derive it using a linear estimation approach. We also
note that IAA can, if needed, be extended to reconstruct missing
data, leading to the missing-data IAA, or MIAA, algorithm [28]. This
step is also possible for the algorithm proposed here, but is beyond
the scope of this paper.

To illustrate the power and potential of the proposed algorithm,
we examine the results on both simulated data and on measure-
ments from stochastic NQR (sNQR) experiments examining some
common explosives.

The paper is organized as follows. In the next section (Section 2)
we derive the dIAA algorithm and in Section 3 we propose a sub-
space algorithm that provides an initial estimate. The performance
of the proposed algorithms is studied in Section 4, using both sim-
ulated and measured data. Finally, Section 5 contains our
conclusions.
2. The dIAA algorithm

In this section, we propose the nonparametric decay IAA (dIAA)
algorithm that allows for a two-dimensional (2D) spectral repre-
sentation of arbitrarily sampled 1D measurements, without need-
ing the selection of any user parameter. The 2D representation of
the spectral content of the signal allows for an accurate represen-
tation of both the line frequencies and their spectral widths.

Consider a signal described by the sum of the contributions
from each frequency grid point fxkgK

k¼1 and decay grid point
fbdg

D
d¼1:

ytn
¼
XK

k¼1

XD

d¼1

ad;keð�bdþixkÞtn ; n ¼ 1; . . . ;N; ð1Þ

where ad;k represents the complex-valued amplitude for a possible
sinusoidal component with frequency xk and decay bd, whereas N
denotes the number of available samples. Note that no assumption
is made on the sampling scheme, thereby allowing for arbitrary
sampling times, i.e., ftngN

n¼1. Furthermore, note that no signal model
has been assumed; rather the signal is made from the contribution
corresponding to each of the frequency and decay grid points. There
is also no corrupting noise term as is typical in model-based meth-
ods describing the data as a signal part and a noise part. The contri-
bution of any noise component, or any other interference, is instead
implicitly described via its contribution to ad;k. Let sd;k denote the
(damped) Fourier vector for frequency xk and decay bd, so that

sd;k ¼ eð�bdþixkÞt1 � � � eð�bdþixkÞtN
� �T

; ð2Þ

and denote the vector of available measurements as

y ¼ yt1
� � � ytN

h iT
: ð3Þ

Then, by using (2) and (3), (1) can be rewritten in a more compact
form, given by:

y ¼
XK

k¼1

XD

d¼1

ad;ksd;k: ð4Þ

Denote the signal energy at the grid point associated with fre-
quency xk and damping bd as

Pd;k ¼ ad;k

�� ��2: ð5Þ

Also, let
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Q d;k ¼ R� Pd;ksd;ks�d;k; ð6Þ

denote the contribution from all other grid points except the grid
point ðd; kÞ, where R is the covariance matrix of the available data,
given by

R ¼
XK

k¼1

XD

d¼1

Pd;ksd;ks�d;k: ð7Þ

Thus, Q d;k can be seen as a form of interference covariance matrix.
Consider a general linear estimator of ad;k:

âd;k ¼ h�d;ky: ð8Þ

The weight vector hd;k can be found through

min
hd;k

h�d;kQ d;khd;k s:t: h�d;ksd;k ¼ 1; ð9Þ

i.e., we design a linear combiner that minimizes the output from all
grid points other than ðbd;xkÞ, but passes the component with the
frequency and damping of interest undistorted. Since Pd;k does not
depend on hd;k and Pd;kðh�d;ksd;kÞðh�d;ksd;kÞ� ¼ Pd;k, (9) is equivalent to

min
hd;k

h�d;k Q d;k þ Pd;ksd;ks�d;k
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R

hd;k s:t: h�d;ksd;k ¼ 1: ð10Þ

The minimizer is readily found as (see, e.g., [1])

ĥd;k ¼
R�1sd;k

s�d;kR�1sd;k

: ð11Þ

An estimate of the amplitude at gridpoint ðbd;xkÞ can thus be found
as (see (8))

âd;k ¼
s�d;kR�1y

s�d;kR�1sd;k

: ð12Þ

As R depends on the amplitudes at each grid point, (12) must be
implemented as an iterative algorithm. Here, we use the least-
squares (LS) 2D periodogram [5] as an initial estimator, i.e., we ini-
tially set R ¼ I, the identity matrix. The dIAA spectral representation
is thus found by iterating the estimation of R in (7), and the grid
point amplitudes in (12), until a suitable stopping criterion is met.
Table 1 provides a summary of the required steps. Herein, we iter-
ate until the estimates have practically converged, i.e., the differ-
ence between the amplitudes âd;k between each step is smaller
than some preset threshold e, which generally requires no more
than 10–15 iterations to provide a good solution. There is as of
yet no proof of convergence of the IAA, MIAA, or dIAA algorithms;
however, in [25], the IAA algorithm has been shown to converge lo-
cally. All indications suggest that a similar result would hold also for
dIAA. It is worth noting that the difference between dIAA and IAA is
that the former establishes a 2D grid mesh, both in frequency and
damping domain, whereas the latter only considers a 1D frequency
grid. Hence, the resulting dIAA algorithm will be roughly D times
more computational demanding than IAA. As can be expected, this
also implies that if we set D ¼ 1 and b1 ¼ 0, omitting the detailing of
the signal decays, then dIAA reduces to IAA. Typically for spectro-
Table 1
Outline of the dIAA algorithm.

Step 0: Initialize using an LS-estimate: âd;k ¼
s�d;k y

s�
d;k

sd;k
¼ s�d;k yPtN

t¼t1
e�2bd t

.

Step 1: Compute the covariance matrix R using (7) together
with the most recent estimate of fâd;kg.

Step 2: Compute the amplitude estimate fâd;kg using (12)
with the most recent estimate of R.

Step 3: Repeat steps 1 and 2 until practical convergence.
scopic signals, most of the ad;k values are nearly zero, except for a
small number of significant elements, and analogously to the IAA
case, this suits the dIAA algorithm best [24]. Finally, we note that
in order to decrease the computational complexity, one may imple-
ment the algorithm by making use of a procedure similar to the one
suggested in [29].

3. A subspace-based algorithm

As we are herein primarily interested in spectroscopic data
exhibiting Lorentzian lineshapes, measured in uniformly sampled
subblocks, we now proceed to proposing a fast parametric, i.e., mod-
el-based, subspace-based algorithm for obtaining an initial estimate
of the range of frequencies and dampings of interested. The algo-
rithm is termed damped block-ESPRIT (dBESP), as it is based on the
principles of the ESPRIT algorithm (see, e.g., [1]). It should be stressed
that this algorithm makes much stronger assumptions on the as-
sumed signal, making it applicable in only a subset of the cases
where dIAA can be used. Nevertheless, for spectroscopic data, the
method allows for a way to initialize the region of interest for dIAA.
Assume that the noise-free data can be written as

yt ¼
XP

p¼1

apeð�bpþixpÞt ; ð13Þ

where P is the number of damped sinusoids in the signal, which is
assumed to be known. Furthermore, assume that the data is gener-
ated in blocks of Nbl regularly sampled points, where the length of
the gap between two consecutive blocks is Ngap samples, not neces-
sarily an integer, and that S is the number of blocks. Let
fxkgS

k¼1 2 CNbl�1 denote the vector of data in block k. Then, xk can
be written as

xk ¼ ABck; ð14Þ

where

A ¼½a1 � � � aP�; ð15Þ

an ¼ eð�bnþixnÞ � � � eð�bnþixnÞNbl
� �T

; ð16Þ

B ¼diag ½a1 � � � aP�T
� �

; ð17Þ

ck ¼ eð�b1þix1Þðk�1ÞðNblþNgapÞ � � � eð�bPþixP Þðk�1ÞðNblþNgapÞ
� �T

; ð18Þ

and diagðxÞ is a diagonal matrix with the vector x on its diagonal.
The matrix containing each block of data as a column can therefore
be written as

X ¼ x1 � � � xS½ � ¼ ABC�; ð19Þ

where C� ¼ ½c1 � � � cS�. Let U denote the matrix made from the P
dominant left singular vectors of X. Then, reminiscent of the ESPRIT
algorithm (see, e.g., [1]), we can use U to find an estimate of fbkg

P
k¼1

and fxkgP
k¼1, since range ðAÞ is spanned by U. The estimates are

found from the magnitude and angle, respectively, of the eigen-
values of

UL ¼ U�1U1
� 	�1U�1U2; ð20Þ

where U1 ¼ ½INbl�1 0�U and U2 ¼ ½0 INbl�1�U; INbl�1 denotes the iden-
tity matrix of size ðNbl � 1Þ � ðNbl � 1Þ, and 0 the ðNbl � 1Þ � 1 col-
umn vector of zeros. When S < Nbl, using the matrix V made from
the right singular vectors of X, which span range ðCÞ, is preferable.
The estimates of the dampings and frequencies are then retrieved
from the eigenvalues of

UR ¼ V�1V1
� 	�1V�1V2; ð21Þ

where V1 and V2 are formed similarly to U1 and U2, but with U re-
placed by the conjugate of V. However, aliasing in the frequency
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Fig. 1. (a) Real part and (b) imaginary part of a simulated FID without noise.

1 The simulation data is chosen to mimic the signal obtained by examining the
explosive RDX, excited at 5.192 MHz, using stochastic NQR spectroscopy [13,30].
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estimate will likely occur, due to the factor ðNbl þ NgapÞ in (18). A
remedy for this is to use the left singular vectors to get an initial
estimate fx̂L

kg
P
k¼1, and then use that information to unwrap the

phase. Denote the (possibly) wrapped frequency estimates obtained
from the right singular vectors by fŵkgP

k¼1, so that

ŵk ¼ xkðNbl þ NgapÞ � 2pqk: ð22Þ

An estimate of qk can be found as

q̂k ¼
x̂L

kðNbl þ NgapÞ � ŵk

2p
; ð23Þ

where q̂k is rounded off to the closest integer. The estimates of the
frequencies, obtained from the right singular vectors, are thus
formed as

x̂R
k ¼

ŵk þ 2pq̂k

Nbl þ Ngap
; k ¼ 1; . . . ; P; ð24Þ

and estimates of the dampings as the natural logarithm of the mag-
nitude of the eigenvalues of UR. We note that the number of sinu-
soids that can be dealt with by dBESP is limited by the available
number of data blocks.

4. Results

In this section, we illustrate the performance of proposed algo-
rithms using both simulated data and experimental data.

4.1. Simulations

We first evaluate the algorithms on simulated data, examining
the performance for different signal-to-noise ratios (SNR’s), de-
fined as SNR ¼ r�2

w r2
s , where r2

w and r2
s denote the energy of the

noise and of the noise-free signal, respectively. The performance
was evaluated using the normalized root mean squared error
(nRMSE):

nRMSEðx̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

x� x̂ð Þ2

x2

( )vuut ; ð25Þ

where E is the expectation operator, x denotes the true parameter
and x̂ an estimate thereof. Initially, we examine a simplistic signal
model, containing only a single damped sinusoid corrupted by a
zero mean white Gaussian circularly symmetric noise. The expo-
nentially damped sinusoid has frequency x ¼ 2pf ; f ¼ 0:03 Hz,
damping (or spectral width) b ¼ 0:012 Hz, and complex amplitude
a ¼ 1þ i, where the initial phase is uniformly distributed on ½0;2pÞ.
The data is sampled in blocks of 16 samples with a sampling rate of
1 Hz. The first block starts at 0 and the kth block at 26.5 k. In total, 6
blocks of data were used, giving a total of N ¼ 96 samples. Fig. 1 dis-
plays the real and imaginary part of the noise-free signal.1 We com-
pare the proposed algorithms with the periodogram spectral
estimator and the maximum likelihood (ML) estimator (see, e.g.,
[1]). The former method is commonly used for estimation of damp-
ing and frequency, where the damping can be estimated from half-
width of the peak at half its height. As the data is irregularly sam-
pled, we use the least-squares periodogram (see, e.g., [31]), in the
following abbreviated as PerLS. Note that extending the ML algo-
rithm to multiple peak scenarios is not straightforward and, as this
paper focuses on nonparametric spectral estimation, this algorithm
will not be considered for those scenarios. The spectra were evalu-
ated over K ¼ 1000 frequency grid points, and for dIAA and ML the
damping grid ranged from 0 to 0.02 in D ¼ 101 steps. Furthermore,
dIAA was iterated ten times, which empirically has been shown to
be enough to provide a good solution.

We note that one could also compare with the periodogram
estimated from averaging the sub-periodograms from each block.
This implies that each periodogram is estimated from only 16 sam-
ples and, as the periodogram is inconsistent and its performance
highly depends on the number of samples used, a large bias in
the damping estimate is expected. Therefore, this approach is not
recommended and will not be further considered.

Fig. 2 shows the nRMSE of the frequency, damping, and ampli-
tude estimates, where the expectation in (25) was empirically
evaluated over 100 Monte-Carlo simulations. As a comparison,
the Cramér-Rao lower bound (CRB) is also displayed, showing the
theoretical lower limit for the variance of any unbiased estimator
(see [32] for a reference on the CRB for exponentially damped
sinusoids).

As is seen in Fig. 2a, dIAA, PerLS and ML show similar perfor-
mance for the frequency estimate, and the CRB is attained for
SNR P �5 dB. For dBESP, a higher SNR is needed to achieve the
same performance and the CRB is not attained until the signal is
significantly stronger ðSNR P 5 dBÞ. For that value of SNR, the
nRMSE’s of dIAA, PerLS and ML become 0 due the limitation of
the frequency grid.

For the estimation of damping, as is shown in Fig. 2b, dIAA
shows a large improvement over PerLS, whereas ML outperforms
all the other methods. Moreover, dBESP outperforms dIAA for
SNR P 5 dB. The poor performance of PerLS is mainly due to the
fact that a small value of N prevents PerLS from obtaining an accu-
rate estimate, despite an increased SNR. Note that the limited
range of dampings we search over will give a lower limit of the
nRMSE, yielding biased dIAA estimates that appear lower than
the CRB at SNR ¼ �10 dB.
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In Fig. 2c, we compare the performance of the amplitude esti-
mates. As expected, ML is optimal and attains the CRB for all SNR’s
considered. For PerLS, the amplitude is estimated using least-
squares, using the frequency and damping estimates previously
obtained. Again, PerLS shows poor performance, mainly due to
the poor damping estimate. For large SNR, dBESP outperforms
dIAA, even though the difference is quite small. Intriguingly, for
small SNR we find that the nRMSE obtained by dIAA is smaller than
the CRB. This is due to the fact that the estimation of the damping
is limited, as discussed above, which will yield biased amplitude
estimates.
We remark that we expect the difference in performance be-
tween dIAA and PerLS to be even larger in a multi-peak scenario,
especially for closely spaced peaks where leakage and sidelobe ef-
fects may significantly affect the periodogram.

Next, we examine the performance for different dampings, at
SNR ¼ 10 dB. The setting is identical to the previous one except
for the damping grid that now ranged from 0 to 0.060 in D ¼ 61
steps, and that we now used 5 blocks of data, giving a total of
N ¼ 80 samples.

Fig. 3 displays the result of the nRMSE for the frequency, damp-
ing, and amplitude estimates, evaluated over 100 Monte-Carlo
simulations. As can be seen, both ML and dBESP are approximately
attaining the CRB for all dampings considered at this SNR, except
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for dampings larger than 0.03 Hz, where ML shows a bias in the
frequency estimate. The nonparametric methods can only compete
with dBESP and ML in the frequency estimation for dampings
smaller than 0.03 Hz. Furthermore, for low dampings, the fre-
quency estimates of dIAA, PerLS and ML have nRMSE ¼ 0 for rea-
sons discussed above. For larger damping, there is hardly any
information left in the last block of data, causing problems for Per-
LS, and dIAA yields better estimates than PerLS.

For the estimation of damping, shown in Fig. 3b, we see that the
performance is poor for b ¼ 0:001, which is not that surprising
considering that the true parameter is very small; indeed when
Table 2
Table of estimates for the AN data.

Method f̂ (kHz) b̂ (kHz) â ð�105Þ

dIAA 496.7 0.32 3:9� 4:5i
PerLS 496.7 0.40 3:8� 4:3i
dBESP 496.8 0.19 3:6� 0:8i
ML 496.7 0.17 3:0� 3:5i
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Fig. 4. (a) Real part and (b) imaginary part of the FID from the AN data together
with data generated from the estimated parameters using dIAA and PerLS. The
insets show an enlargement of the last block of data.
estimating a parameter with the true value of zero, one would ex-
pect the relative error to be infinitely high as long as the variance is
larger than zero. PerLS decreases its nRMSE for increasing damp-
ing; however, this increase in performance is artificial. The damp-
ing estimates from PerLS are somewhat constant, no matter the
true damping. As the true damping is increasing, the estimation er-
ror decreases and PerLS shows an improvement in nRMSE perfor-
mance. For large dampings, the lack of information in the last
block of data causes the performance to degrade. Again, ML and
dBESP are close to attaining the CRB, showing the best
performance.

In Fig. 3c, the amplitude estimates are compared, and dBESP
shows a good performance attaining the CRB for all dampings con-
sidered. The nonparametric methods show similar performance;
however, they cannot compete with dBESP. For dampings equal
to 0.03 and 0.04 Hz, PerLS shows a better result than dIAA, whereas
it is the other way around for the other dampings considered.

As should be expected as the simulation data well match the as-
sumed signal model, the results from the simulations show that
dBESP and ML outperform the nonparametric methods; ML shows
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with data generated from the estimated parameters using dBESP and ML. An
enlarged version of the last block is shown in the insets.
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excellent performance for all SNR’s, and for SNR larger than about
5 dB, dBESP also works well. We note that the amplitude estimate’s
relative errors using PerLS and dIAA decrease for increasing damp-
ing, up to b ¼ 0:04 Hz. After that the lack of information in the sig-
nal causes a degradation in performance. Furthermore, dIAA
outperforms PerLS for smaller dampings, whereas for larger dam-
pings the situation appears to be the opposite. This is due to the
fact that for larger dampings, the damping estimate from PerLS is
improved for reasons discussed above; therefore, due to the im-
proved damping estimate, the amplitude estimate is also im-
proved. However, for larger dampings, the frequency estimate
degrades, which then also affects the amplitude estimate.

To summarize this part: We have seen that the model-based
methods have shown excellent performance in the estimation of
the parameters, whereas dIAA has shown to be a robust nonpara-
metric method, performing well also for lower SNR. PerLS has
shown excellent frequency estimation performance, but greatly
suffering from the few number of available samples when estimat-
ing the linewidths.

4.2. Experimental data

We proceed to evaluate the performance of the algorithms
using measured sNQR data. Two samples were used for the tests.
One was 98 g of ammonium nitrate (AN) fertilizer prills and the
other was 38 g of PE4, a plastic explosive which contains about
88% RDX as the active component. Signals were obtained from
the AN sample alone and from the AN and PE4 samples together.
Stochastic excitation was performed with a 511 element MLBS RF
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Fig. 6. (a) PerLS and (b) dIAA spectrum of AN. (c) and (d) show the magnitude-frequency
artifacts in (a) introduced by the sampling scheme.
pulse train and after each pulse 64 data points were acquired with
a 20 ls dwell time. However, to better illustrate the performance
of the discussed estimators, we will here only examine 35 out of
the collected AN samples (the first four and last 25 samples were
removed) and 48 samples of the combination of AN and PE4 (the
last 16 samples were removed). The reason for using the so-ob-
tained truncated data sets is to better emphasize the performance
difference between the methods; clearly, the performance differ-
ence will depend on the effective data lengths, with larger data sets
providing more accurate estimates, and thus also reducing the per-
formance difference between the estimates. For the AN sample the
stochastic dwell time was 1645 ls, the RF pulse widths were 20 ls
with excitation at 500 kHz and 160 mW peak-to-peak RF power.
For the AN and PE4 sample together, the stochastic dwell time
was 1580 ls, the RF pulse widths were 80 ls with excitation at
499 kHz and 240 mW peak-to-peak RF power. In both cases, the
Q of the NQR detection probe was 80–90. The spectra were gener-
ated using a frequency grid of K ¼ 1000 points, and for dIAA, the
damping grid ranged from 0 to 2 kHz in 81 steps. For the AN data,
the estimates of the frequency, damping and complex amplitude
for the different methods are displayed in Table 2. The frequency
estimates are very similar, but the damping and amplitudes differ.
As seen from the table, dBESP shows a smaller amplitude com-
pared to the optimal ML method, whereas dIAA and PerLS show
a slightly larger damping and amplitude estimate. Figs. 4 and 5
show the cross-correlation domain AN data together with data
modeled using the estimated parameters from Table 2. The data
modeled with parameters estimated from dBESP appears to be-
come out of phase due to a biased amplitude estimate, whereas
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the data from dIAA and PerLS dampens somewhat faster than the
experimental data. The ML data models the data well, as expected.
From Fig. 6a, we see that some artifacts are introduced in the PerLS
spectrum due to the sampling scheme. These artifacts are removed
in the dIAA spectrum seen in Fig. 6b and the 497 kHz peak from AN
is clearly seen. Fig. 6c and d display the rotated dIAA spectrum in
Fig. 6b, rotated such that the frequency and the damping become
clearer. We remark that the height of the sampling scheme arti-
facts depends largely on the size of the block of missing data; the
larger the gap, the larger the artifacts.

For the AN and PE4 combined sample data, the estimates of the
peaks are displayed in Table 3. The ML estimate is omitted for the
reasons discussed above. The AN peak is expected to be at 497 kHz
and the RDX peaks at 501 and 503 kHz, although the exact fre-
quencies will depend on the temperature of the sample. Fig. 7 dis-
plays the cross-correlation domain data together with data
modeled using the estimated parameters from Table 3. As is seen,
the data is quite well modeled by the PerLS and dIAA estimates in
the first two blocks, but after that the SNR becomes too low to al-
low for easy interpretation. Fig. 8 shows the spectral estimates ob-
tained using dIAA and PerLS. It is worth noting that the estimates
contain several spurious peaks and artifacts resulting from inter-
ference signals in the data. Furthermore, the non-uniform sam-
pling also causes artifacts in the PerLS spectrum, as is clearly
seen in Fig. 8a. As seen in the table, both dIAA and PerLS offer accu-
rate frequency estimates, well matching the expected frequencies
of the RDX and AN peaks. The dBESP estimates, however, seem
to suffer from a significant frequency offset for the third peak.
Moreover, the estimates of the damping constants are seen to dif-
fer significantly between the methods. In an ideal experiment, the
two RDX peaks should appear symmetrical. In this experiment, in
order to excite all three peaks, a comprise has been made to the
excitation frequency, removing the symmetry. Given the earlier
simulated signals, we are inclined to trust the dIAA estimates more
than the PerLS estimates, indicating that the latter method will
underestimate the true signal dampings. However, it is worth not-
ing that simulations with multi-peak data shows that for dIAA,
leakage in the damping estimates may also occur, thus possibly
causing a bias in the estimate. We also note that for longer data se-
quences, the performance of the estimates will improve, reducing
the influence of the artifacts resulting from the non-uniform sam-
pling. Therefore, it is reasonable to expect that the seen perfor-
mance gain of dIAA will be more pronounced for shorter
measurement sets, with the differences between the estimates
diminishing as the data sets grow.
5. Conclusions

In this paper, we have derived a nonparametric iterative spec-
tral estimation technique, dIAA, that yields an accurate 2D spec-
tral representation versus frequency and damping, for arbitrarily
Table 3
Table of estimates for the AN and PE4 combined sample data.

dIAA

f̂ 1 (kHz) 495.8

f̂ 2 (kHz) 500.4

f̂ 3 (kHz) 502.3

b̂1 (kHz) 0.60

b̂2 (kHz) 1.08

b̂3 (kHz) 1.28

â1 (a.u.) ð7:73� 2:08iÞ � 104

â2 (a.u.) ð�2:12þ 1:52iÞ � 105

â3 (a.u.) ð1:02þ 2:01iÞ � 105
sampled data. Furthermore, we have proposed a parametric sub-
space-based method, dBESP, which gives reliable estimates of the
parameters of a sum of exponentially decaying sinusoidal com-
ponents corrupted by additive white noise. The methods have
been compared on both simulated and experimental data. In
the single-peak case, the studied parametric methods ML and
PerLS dBESP

495.8 499.0

500.4 507.8

502.2 522.3

0.37 0.36

0.86 1.43

0.96 0.86

ð6:57� 2:73iÞ � 104 ð�6:09� 5:70iÞ � 104

ð�2:02þ 1:71iÞ � 105 ð�1:12þ 1:37iÞ � 104

ð1:02þ 0:82iÞ � 105 ð�1:31þ 0:27iÞ � 104
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dBESP were shown, as expected, to outperform the nonparamet-
ric methods. However, we note that dBESP is limited to data that
are sampled in blocks of regularly spaced samples. The simula-
tions show that among the two nonparametric methods com-
pared in this paper, dIAA outperforms the least-squares
periodogram, PerLS, and that the sampling scheme can create
spurious peaks in the PerLS spectrum but not in the dIAA spec-
trum. For larger data sizes, however, the differences between
PerLS and dIAA are smaller and the artifacts caused by the sam-
pling decrease, especially when the gap between two consecutive
blocks diminishes.

When the methods were applied to experimental data, dIAA
produced spectra where the peaks were clearly visible, whereas
PerLS contained spurious peaks or artifacts. The dIAA spectrum
for a mixed sample containing both AN and RDX also showed some
spurious peaks that were likely due to interferences in the data as
simulations for this type of data, which in the interest of brevity
are not presented in this paper, showed no such spurious peaks.
Furthermore, these simulations also showed that some leakage in
damping might occur also for dIAA, possibly causing a small bias
in the damping estimates.

Finally, we remark on the fact that issues such as line splitting
and spurious peaks, that may affect parametric methods such as
LP, have not been observed for dIAA. Generally, all nonparametric
methods will exhibit some fluctuations in the spectral estimate
due to the variance in the estimate, as well as peaks from interfer-
ence components and artifacts in the data, but this is as expected;
the method is only yielding an accurate depiction of the spectral
content of the observed data.
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